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1. Introduction

During this phase of the research program we have continued to develop ways of
implementing the turbulence closure scheme based on modeling the large scale coherent
structures as instability waves. At the same time we have developed the computational
tools necessary to apply this scheme to jets of arbitrary geometry. This has emphasized
the use of conformal mapping to transform the irregular physical domain into a convenient
computational domain. We have also extended the model we developed earlier for the
shock structure of supersonic jets of arbitrary geometry and multiple jets. Further details

of the most recent developments are given below.

The greatest difficulty we have encountered so far has been determining the details
of how to implement the turbulence closure scheme. We have tried several different ap-
proaches. Until recently we have found that though the qualitative features of the unsteady
flow field could be predicted there were always difficulties with some of the quantitative
features. This has led to a new formulation of the closure scheme. The model still relies
on the modeling of the large scale coherent structures as instability waves but does not
require a detailed modeling of the small scale fluctuations. We feel that this represents
a new and promising feature of our closure technique and we are presently working to

implement this scheme.

We have had much more tangible success in the development of the computational
tools. This is particularly true for the mapping techniques. The schemes we have developed
are very efficient and represent the application of very powerful mathematical tools to

problems of practical significance.

We anticipate significant results in the next stage of our research program as the
program reaches fruition. Two of the three graduate students involved in this research
have passed their comprehensive examinations ¢ nd are able to devote full time to their

research. The third student will take his comprehensive examination this semester.
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2. Research Progress

2.1 Turbulence Closure Scheme

Our calculations have shown that it is very important for the present closure model to
calculate accurately the amplitude of the wavelike turbulent fluctuations which dominate
free shear flows. For free mixing layers, the amplitude is calculated using the kinetic energy
equation for the large scale turbulent fluctuations. This equation determines the amount
of the wave energy convected at each location by balancing the energy gained from the

mean flow with the energy transferred to the small scale, or random fluctuations.

The energy production from the mean shear is obtained explicitly, since we are calcu-
lating the Reynolds stresses from the large-scale motions through the Rayleigh equation.
However, in our previous approaches we needed to know how to model the residual stresses
~4; in order to calculate the energy transferred from the large to the small scale motions.
It was stated in the previous reports that this term is of crucial importance in determining
the wave amplitude. We had earlier proposed a simple eddy viscosity model in which the
length and the velocity scales were those of the large-scale motions. It was then found that
this failed to drain enough energy from the large scale fluctuations. The model was then
further improved by using a split-spectrum hypothesis. The kinetic energy of the small-
scales was obtained by simultaneously solving the mean flow equations and the kinetic
energy equation for the small-scales. Using the characteristic velocity thus obtained for
the small-scale turbulence in the eddy viscosity model for the residual stresses, the shear
layer reached a state of equilibrium. The amplitude of the large scale motions saturated,
as we expected them to do, only if we allowed the numerical constant in the eddy viscosity
model to grow with the amplitude of the large-scale motions. This suggested that the
energy transferred from the large-scale to the small-scale or the high frequency part of the
spectrum be proportional to the cube of the velocity scale, 1.e. % Dimensionally, this is

in fact the energy dissipated by viscosity at the high wavenumber end of the spectrum.
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It thus suggested that we consider an equilibrium state for the small-scale fluctuations in

which the rate at which energy is tranferred from the large scales is equal to the rate at

which energy is dissipated.

With these observations in mind we have reformulated our approach to the closure
scheme. The large scale fluctuations continue to be described by the characteristics of
the locally most unstable instability wave. The details of this fluctuation are found from
a solution of the Rayleigh equation. The amplitude of the large scale fluctuation is ob-
tained from the solution of the energy integral equation for the wave. In this equation
the rate at which energy is lost by the large scales is taken as proportional to the cube
of the wave amplitude. The essential difference in the new scheme is that the small scale
Reynolds stress is not modeled explicitly. Rather, it is obtained from an integral of the
mean momentum equations. It should be noted that once the mean flow and the large
scale Reynolds stresses are defined the small scale Reynolds stress is the only unknown
in the mean momentum equations. Thus the iterative procedure to be employed as we
march downstream from the splitter plate or nozzle consists of inputting the initial mean
velocity profile and the amplitude of the large scale structures. The distribution of the
large structures is then obtained from the Rayleigh equation along with the corresponding
Reynolds stress distribution. This fixes the distribution of the small scale Reynolds stress
at the initial location. An implicit algorithm is then used for the streamwise marching. As
the axial iterations are performed at each step, the downstream velocity profile, the large
and small scale Reynolds stress contributions, and the amplitude of the large scale motions
will converge. We are currently checking this formulation in the developed region of the
shear layer. This has enabled us to determine an appropriate value for the only empirical
constant required by the model which sets the rate of transfer of energy from the large to
the small scales. We believe that this approach is quite new and we are hopeful

that it will lead to good results.



In order to be able to extend these models to jet flows we have also developed a
Rayleigh solver for the instability of compressible axisymmetric jets. This gives the velocity
and temperature fluctuations due to the large-scale turbulent structures to be applied in

the solution of the mean velocity and temperature fields of axisymmetric jets.
2.2 Computational Domains for Jets of Arbitrary Geometry

Ffficient methods establishing the computational domains for jets of arbitrary geom-
etry have been developed and applied. The techniques used involve the generation of the
conformal mappings which carry standard computational domains onto the cross sections
of a given jet. Two topologically distinct cross sections occur in a jet. The first type of
cross section corresponds to the annular shear region surrounding the potential core. The
computational domain in this case is the circular annulus. The second type of cross section
corresponds to the region in the jet downstream of the potential core. In this situation,

the standard computational domain is the unit disc.

The standard regions are chosen to support the numerical solution of the equations
modeling jet flows. Conformal mapping techniques are applied because they minimize
the number of additional terms introduced by the mapping in the transformed equation
governing the stability of jets: the Rayleigh equation. The following two sections will

outline the techniques applied to generate conformal maps.

2.2.1 The Wegmann Method - Recently, Wegmann, refs. 1 and 2, proposed a very
efficient scheme which solved the boundary correspondence problem associated with map-
ping the unit disc onto a region with a smooth boundary. The boundary correspondence
problem is the determinatién of the conformal map, F, of the image of the unit circle in the
computational domain to the smooth curve bounding the shear region in physical space.
Once the boundary correspondence function has been computed, F can be determined on

the interior of the unit disc using the Cauchy Integral Theorem.
The central ideas in Wegmann’s method will now be outlined. Let z[s(t)] be a param-
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eterization of the curve bounding the shear region of a jet flow cross section. It is assumed
that z[s(t)} is a Holder continuously differentiable function with a nonzero first derivative.
The goal of the solution to the boundary correspondence problem is to determine a real

periodic function, n(t), such that

z[s(t) +n(t)] (1)

are the boundary values at exp(it) of an analytic function F. Here, F will be the desired
conformal map carrying the disc onto the shear region. If n(t) is assumed to be a small
correction to s(t), then the linearized form of (1) is the boundary of the analytic function

of interest, F:

2[s(t)] + 2'[s(t)In(t) = F(n(t)) (2)

Since n(t) is taken to be small, the curve defined by (2) approximates the shear region
boundary curve. Wegmann'’s method is to recast (2) as a Hilbert-Riemann problem and
use techniques from the theory of singular integral equations to obtain a solution. The
theory of singular integral equations is introduced in Henrici, ref. 3. This approach is
performed iteratively, generating a numerical scheme to solve for n in (2). The iteration
amounts to updating s(t) in each step as n(t) approaches zero. The iterative scheme is
a quadratically convergent Newton-like method which is very efficient in both computer

time and storage requirements.

Wegmann has also extended this technique to solve the boundary correspondence
problem for the transformation that maps the circular annulus onto a doubly connected
region with smooth boundary curves, ref. 4. Therefore, this basic scheme may be applied

to both types of shear regions existing in jet flows: the simply and doubly connected shear
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layer cross sections. Figures 1 and 2 show the geometry of the simply and doubly connected

conformal maps.
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Figure 2: Sketch of Transformation for Doubly Connected Domain



The Wegmann technique has been developed and successfully applied to several exam-
ples of elliptic shear regions for aspects ratios up to 4. In particular, Wegmann’s method
has been applied to the doubly connected shear region close to the end of the potential
core. The technique works extremely well for boundary curves which are complex analytic
functions. However, this method is very sensitive to the smoothness of the curves bounding
the shear region. If a parameterization of the boundary was used which had derivatives
which become very large in a small interval, the Wegmann method failed to converge,
because 7n(t) was not small. In these cases, Wegmann’s method requires very accurate
initial guesses for s(t), which are not known in advance. The main example of interest
for which the Wegmann method failed was the case of a rectangular shear layer. Here, a
simple complex analytic function mapping a standard interval to a smooth approximation

of a rectangle is not known.

2.2.2 The Trefethen Method - To construct a conformal transformation from a standard
computational domain to a rectangular jet cross section, the Schwartz-Christoffel formula
has been applied. In this case, only the portion of the shear layer in the first quadrant
of the plane is considered. Then the standard software package, SCPACK, developed
by Trefethen, refs. 5 and 6, is used to compute the conformal map from computational
space onto a shear layer cross section in physical space. SCPACK efficiently computes
the conformal map and its inverse, allowing the determination of the metric tensor. The

geometry of the computation for an arbitrary rectangular shear layer is shown in figure 3.

K J

Figure 3. Sketch of Transformation For Rectangular Jet
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In the next stage of our calculations the conformal mapping will be combined with
the stability calculations, based on the the hybrid spectral method desceribed in previous
reports, to determine the local stability characteristics for jets of arbitrary geometry. These

calculations will provide the large scale Reynolds stresses needed in our turbulence model.
2.3 Shock Structure in Arbitrary Geometry Jets

Models have been developed to calculate the shock structure and instability waves in
jets of arbitrary geometry. The calculation of the shock structure is carried out in the
following stages:

(i) A linear shock cell model in which the mixing layer of the jet is approximated by a
vortex sheet. This i)roblem may be solved using the boundary element method for general
jet geometries.

(ii) The effects of the finite thickness of the mixing layer may be included using a
realistic mean velocity and density profile.

(iii) The effects of viscosity and the dissipative effects of the small scale turbulence
may be included.

The analysis and the results of the first two stages mentioned above were included
in an earlier paper; “Shock Structure in Jets of Arbitrary Exit Geometry” — AJAA Paper

87-2697,1987, (submitted for publication in J. Sound Vibration).

At present, the calculations of the shock structure, including the effects of viscosity,
for supersonic jets are being carried out. The details of the model developed are presented

in the next section.

2.3.1 Development of the model - A finite difference technique has been developed
to study the shock structure. This finite difference scheme includes the effects of finite
mixing layer thickness through the use of a realistic mean velocity and density profile and
the effects of viscosity. We are concerned with the solution of the linearized, compressible

equations of motion in which the coefficients depending on the mean flow are arbitrary
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functions of the plane normal to the jet axis. In the linearized equations the viscous
effects or eddy viscous effects describing the influence of the small scale turbulence in
the energy equation are neglected and the viscous terms in the momentum equations are
characterized by their incompressible form. The mean flow properties are taken to be
independent locally of the axial distance: the locally-parallel flow approximation. This

enables a separable form of the linearized equations to be obtained.

A body-fitted coordinate system is used which is particularly suited for problems
of arbitrary geometry. The coordinate lines are based on the location of the edge of
the potential core and its normals. The analytic forms of solution may be found in the
potential core region and outside the jet. These are used as the starting conditions for the
numerical solution in the mixing layer. The results of the numerical solution are matched
with the analytic solutions in the potential core or at the outer edge of the jet. Only certain
axial wavelengths will enable the solutions to be matched and these are the eigenvalues
for the problem. The initial values for each of the normal modes may be obtained by an
eigenfunction expansion at the jet exit, assuming a uniform pressure perturbation. The
amplitude of the pressure perturbations in the jet, associated with this initial off-design

condition may then be calculated.

At this time the numerical scheme is being validated by comparison with calculations
for the circular jet. When this verification is complete the case of the shock structure in
the elliptic jet will be considered. The predictions will be compared with experimental
observations where possible. The results of these calculations have been submitted for

presentation at the AIAA 12th Aeroacoustics Conference, San Antonio, TX in April 1989.
2.4 Multiple Jets

We have extended our analysis of the shock structure and instability of twin supersonic
jets to include the effects of a realistic mean velocity profile. This extension enables the

shock structure in the jets to be influenced by the adjacent jet. This feature is not possible
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if the jets are described by vortex sheets. The use of realistic mean velocity profiles also
enables the preferred mode of instability of the jets to be determined. Tt is this frequency
component that reaches the greatest amplitude and dominates the near field pressure
fluctuations. The interaction between this mode and the steady shock structure, in a
phase-locked mode, results in the observed resonant screech phenomenon. The effect of
the separation of the jets on the shock structure, the preferred mode and the screech will
be calculated. The numerical scheme is being coded and validation tests will then be
run. The results of the caculations will also be presented at the AIAA 12th Aeroacoustics

Conference,

References

[1] Wegmann, R.: An Iterative Method for Conformal Mapping. Journal of Compu-

tational and Applied Mathematics, vol. 14, 1986, pp. 7-18.

(2] Wegmann, R.: Convergence Proofs and Errors Estimates for an Iterative Method for

Conformal Mapping. Numerische Mathematik, vol. 44, 1984, pp. 435-461.

[3] Henrici, P.: Applied and Computational Complex Analysis, vol. 3, John Wiley

and Sons, 1986.

[4] Wegmann, R.: An Iterative Method for the Conformal Mapping of Doubly Connected
Regions. Journal of Computational and Applied Mathematics, vol. 14, 1986,

pp. 79-98.

(5] Trefethen, L.: Numerical Computation of the Schwarz- Christoffel Transformation.
SIAM Journal of Scientific and Statisical Computation, vol. 1, 1980, pp. 82-

102.

[6] Trefethen, L.: SCPACK User’s Guide. ICASE Internal Report, Doc. 24, 1983.

10



NASA
FORMAL
REPORT

FFNo 665 Aug 65



